

Joie Lin Sigurdson Lab STAR 2020

PRION DISEASES

- progressive, neurodegenerative disorders

- share similarities with age-related neurodegenerative disorders

PRION DISEASE

- neurotoxicity \rightarrow neuronal death, spongiform encephalopathy
- mechanisms of neurotoxicity still unclear
- protein-only infectious agent, PrP^{Sc}
- PrP^C has many functions

COMMON FEATURES OF PRION DISEASE:

- protein misfolding
- protein aggregates

a

Amyloid-β plaques

cortex

HUMAN PRION DISEASES PrP^{Sc} plaques

α-synuclein

substantia nigra

Ubiquitin inclusions

spinal cord

Poly-Q inclusions

striatum

Amyloid-β plaques

meninges

THE ROLE OF PrP^C IN PRION DISEASE

Wille, Virology, 2014

G93N-Prp^C MICE SPONTANEOUSLY DEVELOP NEURODEGNERATIVE DISEASE

Nixon et al. (2005) J. Neuropathol Exp Neurol

G93N-Prp^C MICE SPONTANEOUSLY DEVELOP NEURODEGNERATIVE DISEASE

THERE IS NO PRP^{SC} IN THE 93N MOUSE MODEL, BUT NEUROTOXICITY IS STILL OCCURRING.

PRP^{SC} = INFECTIOUS AGENT

hippocampus

al. (2005) J. Neuropathol Exp Neurol

IN THE ABSENCE OF PRP^{SC}, HOW DOES PRP^C CAUSE NEUROTOXICITY?

PrP^{Sc} = infectious agent

Prp^c AND DEMYELINATION

At terminal disease (550 d), 93N brains exhibited **decreased (>50%)** myelinassociated glycoprotein (MAG) levels.

PrP^C AND DEMYELINATION

MYELIN BASIC PROTEIN (MBP) STAINING

WΤ

PrP^C AND DEMYELINATION

HYPOTHESIS

In prion disease, oligodendrocytes develop normally and then degenerate due to excitotoxicity.

excitotoxicity = when neurons die from overactivation of glutamate receptors

AIM I: To determine (i) the timing and extent of myelin loss and (ii) the maturity of the oligodendrocyte population in the *Prnp*^{93N} knock-in mice (homozygous, heterozygous, and WT littermate controls).

<u>AIM 2</u>: To compare the PrP interactome in the *Prnp*^{93N} knock-in mice (homozygous vs.WT littermate controls) and analyze the differences in interacting proteins or pathways involved in myelin homeostasis.

<u>AIM I METHODS:</u> DETERMINE THE TIMING AND EXTENT OF MYELIN LOSS AND MATURITY OF THE OLIGODENDROCYTE POPULATION.

Collect brain and spinal cord samples for biochemical and histologic analyses of myelin proteins and oligodendrocyte populations.

<u>AIM I METHODS</u>: DETERMINE THE TIMING AND EXTENT OF MYELIN LOSS AND MATURITY OF THE OLIGODENDROCYTE POPULATION.

Characterize and quantify precursor and mature oligodendrocyte populations in the brain.

OLIG2

<u>AIM 2:</u> COMPARE THE PRP INTERACTOME & ANALYZE DIFFERENCES IN INTERACTING PROTEINS/PATHWAYS INVOLVED IN THE CONTROL OF MYELINATION.

EAAT2 TRANSPORTER DECREASED INTERACTIONS WITH PRP IN THE 93N MOUSE MODEL

- excitatory amino acid transporter 2 (EAAT2)
 - sodium-dependent glutamate transporter
 - glutamate = excitatory neurotransmitter
- decreased PrP interactions with EAAT2
 - \rightarrow lack of glutamate reuptake
 - \rightarrow excess glutamate
 - \rightarrow increased excitotoxicity?

NEXT STEPS

- Continue with image analysis (oligodendrocyte markers)
- Investigate EAAT2 levels
 - Plus other glutamate transporters and receptors

SUMMARY

- Prion diseases are progressive, neurodegenerative diseases
- Our mouse model shows that prion neurotoxicity can occur in the absence of prion aggregates
 - Modified PrP^C can be neurotoxic
- In prion disease, we hypothesize that oligodendrocytes (cells responsible for myelinating the CNS) degenerate over time, leading to demyelination

- Christina Sigurdson
- Julia Callender
- Sigurdson Lab
- Donald Pizzo
- Alexandra Marquez
- Nigel Calcutt
- Samantha Darling
- STAR Program
- Funding provided by NIHT35 OD010956

QUESTIONS?

CHRONIC WASTING DISEASE IN CERVIDS

All losstions are approximations based on bast available information

REFERENCES

- Acevedo-Morantes CY and Wille H (2014) The Structure of Human Prions: From Biology to Structural Models – Considerations and Pitfalls. Viruses 6(10): 3875-3892. doi: 10.3390/v6103875
- Lin CL, Kong Q, Cuny GD, Glicksman MA. Glutamate transporter EAAT2: a new target for the treatment of neurodegenerative diseases. *Future Med Chem*. 2012;4(13):1689-1700. doi:10.4155/fmc.12.122Mount CW and Monje M (2017) Wrapped to Adapt: Experience-Dependent Myelination. *Neuron*. 95(4): 743-756.
- Nixon RA, Wegiel J, Kumar A, et al. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol. 2005;64(2):113-122. doi:10.1093/jnen/64.2.113
- Williamson JM and Lyons DA (2018) Myelin Dynamics Throughout Life: An Ever-Changing Landscape?. *Front. Cell. Neurosci.* 12:424. doi: 10.3389/fncel.2018.00424